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Abstract Coupled di�usion of ions and electrons in
microcrystals of insertion compounds immobilized at an
electrode surface is theoretically analysed by a lattice-gas
model without interactions. The transport in the direc-
tion perpendicular to the electrode surface depends on
Wagner's factor for electrons, while the transport par-
allel to the electrode depends on this factor for ions. The
iso-concentration pro®les may depend on the orienta-
tion of the particle on the electrode surface. Chrono-
amperometric responses of volume and surface redox
reactions are calculated.
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Introduction

Insertion compounds are solids exhibiting mixed ionic
and electronic conductivity [1]. Their electrochemical
properties can be measured by cyclic voltammetry if the
microcrystals are mechanically transferred onto the
surface of a graphite electrode [2±10]. The main char-
acteristic of these redox reactions is the separation of
¯uxes: electrons are exchanged at the electrode jparticle
interface, while ions enter the crystal through the par-
ticlej solution interface. The most reactive zone is the
three-phase boundary, where these two interfaces meet.
In a previous paper [11], a theoretical model of a simple
redox reaction with the insertion of cation C� was de-
veloped:

fOxg � neÿ � nC�()fCnRedg �1�
where fOxg and fCnRedg were insoluble components of
the solid particle and the ion C�was dissolved in the
liquid electrolyte. It was assumed that the insertion
compound was not a metallic conductor, but that the
mobility of the charge inside the particle was achieved by
the electron hopping between localized redox sites and
was accompanied by the di�usion of counterions C�, as
in redox polymers [12]. This mechanism is called the
faradaic, or redox, conductivity and it obeys Fick's laws
of di�usion [13]. In the model it was assumed that the
di�usion in the direction perpendicular to the electrode
surface depended on the di�usion coe�cient of the
electrons, while the di�usion in the direction parallel to
the electrode surface depended on the di�usion coe�-
cient of the ions. In this short communication a rigorous
model for the coupled di�usion of ions and electrons in
two directions is developed using a lattice-gas concept
without interactions, and the relationship between the
di�usion coe�cients is discussed.

Theory and discussion

In equilibrium, the reaction of Eq. (1) satis®es the
Nernst equation:

�Ox� � �CnRed� exp�nF �E ÿ Ef�=RT � �2�
where E is the electrode potential and Ef is a formal
potential which is de®ned as:

Ef � E� � �RT=nF � ln�K� � �RT =F � ln�C�� �3�
Here E� is a standard potential of the redox reaction
fOxg � neÿ()fRednÿg, and K is an equilibrium con-
stant of the ion-transfer reaction fRednÿg � nC�()
fCnRedg [14]. The concentrations of the solid redox
components [Ox] and �CnRed� are equal to the product
of the molar density of the solid compound (q) and the
mole fraction of the particular component in the mixed
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crystal [15]. The concentration of the ions C� dissolved
in the solution is assumed to be higher than 1 M, so that
transport in the solution can be neglected [16].

The same geometric model as in the previous paper
[11] is assumed: an in®nite crystal attached to an in®nite
electrode surface (see Fig. 1). The positive semi-axis x is
located in the crystal jelectrode interface, and the neg-
ative semi-axis x lies in the liquid electrolytejelectrode
interface. The positive semi-axis y is situated in the
electrolytej crystal interface. The three-phase boundary
is perpendicular to the x-y plane. The Nernst equilibrium
is initially established along this boundary. Then the
current is conducted over the crystal surface which is
facing the solution by the di�usion of electrons, because
the ions from the solution can readily compensate for
changes in charge arising from faradaic reactions there.
This surface redox reaction creates a gradient of elec-
trochemical potential and de®nes the initial conditions
for the di�usion of ions into the crystal body. Hence, the
ions do not penetrate the crystal surface only at the
three-phase boundary and their di�usion in the crystal is
not radial. The edge e�ects are neglected.

The ¯uxes of electrons and ions in the solid particle
are mutually perpendicular and proportional to the
gradients of the corresponding electrochemical poten-
tials:

j��� � ÿ D���W����oc���=ox�
ÿ D���c���jz���jF �o/=ox�=RT �4�

j�ÿ� � ÿ D�ÿ�W�ÿ��oc�ÿ�=oy�
� D�ÿ�c�ÿ�jz�ÿ�jF �o/=oy�=RT �5�

where W � 1� o ln�c�=o ln�c� is Wagner's thermody-
namic factor and c is the activity coe�cient [1]. If
z�ÿ� � ÿz���, the condition of electroneutrality requires
that j��� � j�ÿ� and c��� � c�ÿ� � �CRed�. The potential
/ is caused by the charge separation. An uncompensated
charge is surrounded by a spherical electric ®eld, so that
o/=ox � o/=oy. Under these conditions the potential
gradient and the coupled ¯ux are:

o/=ox ��D�ÿ�W�ÿ��oc=oy�
ÿ D���W����oc=ox��
� �D�ÿ� � D����ÿ1�cF =RT �ÿ1 �6�

j � ÿDx�oc=ox� ÿ Dy�oc=oy� �7�

Dx � D�ÿ�D���W����D�ÿ� � D����ÿ1 �8�
Dy � D�ÿ�D���W�ÿ��D�ÿ� � D����ÿ1 �9�
The di�usion coe�cients Dx and Dy di�er by Wagner's
factors. The physical meaning of this factor was recently
discussed by Maser [17] who applied the concept of
dopant-occupiable sites. Apparently, the factor is the
consequence of the quasi-bimolecular nature of each
singular electron, or ion transfer step.

It is well known [11, 17±20] that a series of electron
and ion exchange reactions between immobile redox
centers

fCnRedgx;y � fOxgx�dx;y�dy

()fOxgx;y � fCnRedgx�dx;y�dy �10�
results in the net charge transfer which obeys Fick's law
of di�usion:

d�CnRed�x;y=dt � kq�dx�2�d2�CnRed�x;y=dx2�
� kq�dy�2�d2�CnRed�x;y=dy2� �11�

where k is a bimolecular rate constant, q is the molar
density and dx and dy are mean distances between two
adjacent redox sites. The products kq�dx�2 and kq�dy�2
correspond to the di�usion coe�cients Dx and Dy , re-
spectively. If the redox centers are not spherical, then
dx 6� dy and consequently Dx 6� Dy . This kinetic theory
explains well the mechanism of electron hopping in re-
dox polymers [13]. The consequence of its application to
solid particles is that the di�usion coe�cients Dx and Dy
may depend on the orientation of the crystals on the
electrode surface. This implies that the Wagner's factors
for ions and electrons may depend on the crystal ori-
entation, which is in the agreement with Maser's theory
[17]. Equation 11 was derived by assuming that both
ions and electrons are exchanged simultaneously and
that no charge separation occurs. However, by identi-
fying kq�dx�2 and kq�dy�2 with Dx and Dy (Eqs. 8 and 9),
respectively, the in¯uence of the spherical electric ®eld
(Eq. 6) is introduced in Eq. (11).

The propagation of the redox reaction of Eq. 1
through the crystal is described by the di�erential
equation:

o�CnRed�=ot � Dxo2�CnRed�=ox2 � Dyo2�CnRed�=oy2

�12�
with the following initial and boundary conditions:

t � 0: �Ox� � q; �CnRed� � 0 �13�
t > 0; x!1: �Ox� ! q; �CnRed� ! 0 �14�
y !1: �Ox� ! q; �CnRed� ! 0 �15�
x � 0 and y � 0: �Ox� � �CnRed� � q �16�
x � 0 and y � 0: �Ox�x�0;y�0 � �CnRed�x�0;y�0exp�u�

�17�

Fig. 1 A scheme of the theoretical model
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u � nF �E ÿ Ef�=RT �18�
x � 0: nFDx�o�CnRed�=ox�x�0 � ÿdIS=dS �19�
dS � b � dy �20�
y � 0: nFDy�o�CnRed�=oy�y�0 � ÿdIa=dA �21�
dA � b � dx �22�

where S � b � y and A � b � x are the areas of the crystal
jelectrolyte and the crystalj electrode interfaces, respec-
tively, and b is the length of the three-phase boundary.
The amounts of charges passing through these interfaces
are equal. However, the areas of these two interfaces (S
and A) do not have to be equal. So, the currents IS and Ia
are equal, but their densities Is=S and Ia=A do not have
to be equal. These densities depend on the di�usion
coe�cients Dx and Dy which need not be equal.

The solution of Eq. 12 for chronoamperometry is
obtained by using the Laplace transformation and the
substitution

L�CnRed� � P �x; s�Q�y; s� �23�
Equation 12 is separated into two di�erential equations:

Dx�o2P �x; s�=ox2� � ksP�x; s� �24�
Dy�o2Q�y; s�=oy2� � �1ÿ k�sQ�y; s� �25�
where s is the transformation variable and k is a constant
de®ned as 0 < k < 1. At the constant electrode potential,
the solution of Eqs. 24 and 25 is:

L�CnRed� � q�1� exp�u��ÿ1sÿ1

� exp ÿs1=2 xDÿ1=21 � yDÿ1=22

� �� �
�26�

where D1 � Dx=k and D2 � Dy=�1ÿ k�. The currents are
calculated using Eq. 26 and the conditions of Eqs. 19±
22. After the inverse Laplace transformation and the
integration over the whole interface area one obtains

IS � nFbqDx�pD1t�ÿ1=2�1� exp�u��ÿ1

�
Z1
0

exp�ÿy2=4D2t� dy �27�

Ia � nFbqDy�pD2t�ÿ1=2�1� exp�u��ÿ1

�
Z1
0

exp�ÿx2=4D1t� dx �28�

The integrals in eqs. 27 and 28 are equal to �pD2t�1=2 and
�pD1t�1=2, respectively. From the condition IS � Ia � I it
follows that Dx�D2=D1�1=2 � Dy�D1=D2�1=2 and hence
k � 0:5. So the current and the concentration of the
reduced redox component are:

I � nFbq�DxDy�1=2�1� exp�u��ÿ1 �29�

�CnRed� � q�1� exp�u��ÿ1erfc
n
2ÿ1tÿ1=2

h
x�2Dx�ÿ1=2

� y�2Dy�ÿ1=2
io

�30�

This is the same result as in the previous paper [11], but
here it is obtained without intuitively assumed separa-
tion of the current into the surface and volume com-
ponents. The steady-state current having the form of the
polarographic wave (Eq. 29) is the consequence of the
assumption that the crystal has an in®nite volume.

The iso-concentration pro®les are straight lines,
which can be calculated from Eq. 30 by putting
x�2Dxt�ÿ1=2 � y�2Dyt�ÿ1=2 � 2j, where j is a certain
constant. This condition is satis®ed if:

y � ÿ�Dy=Dx�1=2x� 2j�2Dyt�1=2 �31�
If D�ÿ� � D���, the di�usion coe�cients are:
Dx � DW���=2 and Dy � DW�ÿ�=2. Hence, Dx depends on
Wagner's factor for ions and Dy depends on this factor
for electrons. The actual concentration of the reduced
component along the pro®le is: �CnRed� �
q�1� exp�u��ÿ1erfcfjg, which can be calculated by
using the error function tables.
The surface of particles is in contact with the liquid
electrolyte. It may exhibit the redox conductivity even if
it cannot be penetrated by the ions C� (i.e., if Dx � 0).
Under chronoamperometric conditions, the current on
the surface can be calculated from the derivation of Eq.
28:

dIa=dA � nF qDy�D2pt�ÿ1=2�1� exp�u��ÿ1
� exp�ÿx2=4D1t� �32�

The surface is located at x � 0. By putting D2 � 2Dy and
dA � b dx, where dx is a thickness of molecular mono-
layer, the surface current is:

Ia; x�0 � nF qb dx�Dy=2pt�1=2�1� exp�u��ÿ1 �33�
Contrary to the volume current (see Eq. 29), the current
on the particle surface decreases with the square-root of
time and depends solely on the surface di�usion coe�-
cient Dy .

An apparent reversibility of the solid state redox re-
action depends on the di�erence between the heteroge-
neous charge transfer on the particle jelectrode interface
and homogeneous charge transfers in the particle. The
homogeneous exchange reaction of Eq. 10 plays the
same role in the solid as the mass transfer in the solu-
tion. So, if the charge transfer over the particlej electrode
interface is slower than the propagation of charges in the
particle, the redox reaction appears irreversible.
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